# The Monetisation of Space

**Our Sustainability and Expansion in Space** 

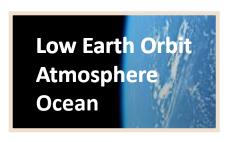


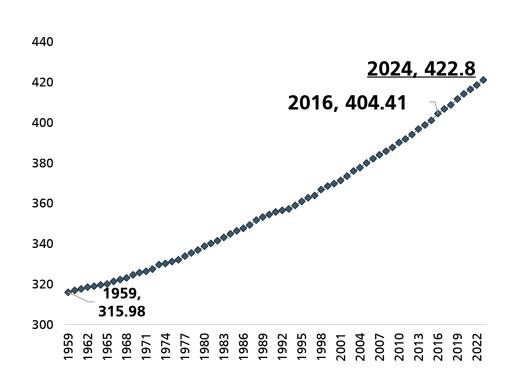
**frontiers** Frontiers in Space Technologies

### The monetisation of space

Armen V. Papazian\*†

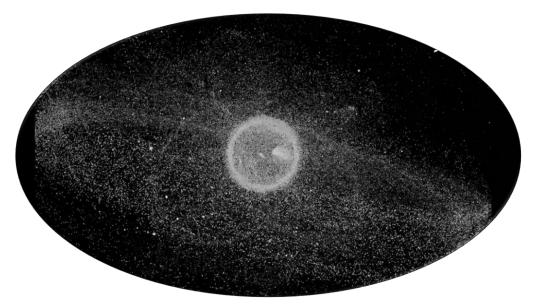
Space Value Foundation, London, United Kingdom


The defining obstacle to our expansion into outer space is not technological, but conceptual. While our engineering ingenuity has already enabled extraordinary feats - from lunar landings to Martian rovers and artificial intelligence—our financial and monetary economics remain shackled to inadequate assumptions that prohibit the sustainable expansion of our footprint in outer space and drag us ever closer to the edge of an ecological catastrophe on Earth. Today, neither billionaires, corporations, nor governments are able to fund our multi-planetary or multi-habitat future. I argue that our expansion into outer space requires a fundamental rethink of our financial value framework, mathematics, and monetary architecture. To unlock the massive investments needed for outer space development and settlement, we must first integrate space as a foundational dimension of value in finance-heretofore built around risk and calendar time. The introduction of space as an analytical dimension in finance is a first step that leads to a new principle of value, the Space Value of Money (SVoM), which, in turn, triggers a profound change in our mathematics and architecture. These transformations make the monetisation of space possible, i.e., the creation of money based on space value creation. The monetisation of space is translated into systemic change through the introduction of new financial instruments designed for central bank purchase. Public Capitalisation Notes (PCNs) are proposed as a viable alternative that can help fund our sustainable multi-planetary future.


space, risk, time, money, finance, investment, multi-planetary, sustainability



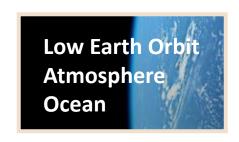



**Financial and Monetary Economics** 

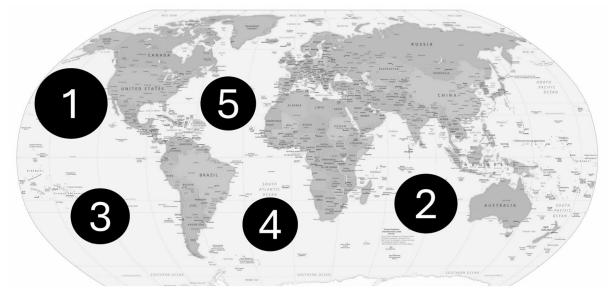




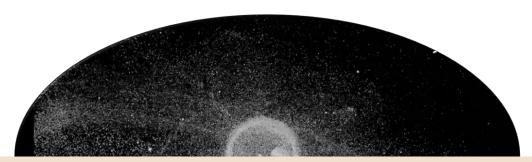
TOTAL SCIAL SCIAL


The five offshore plastic accumulation zones in the world's oceans Source: Author, using Ocean Cleanup (2024), and map from CIA (2023)




Atmospheric CO2, yearly mean, mole fraction in dry air (ppm)

Source: NOAA (2024)


Outer Space Debris Simulation >1mm Source: ESA (2019)







The five offshore plastic accumulation zones in the world's oceans Source: Author, using Ocean Cleanup (2024), and map from CIA (2023)



Human productivity is effectively careless, and we are littering every environment we touch.



# January 2024:

"Busiest start to a year since the Space Age dawned in 1957"

(Space Foundation 2024)

Total Orbital Launches, and by country, from Q1/2023 to Q2/2025

Source: Papazian (2024) compiled and updated using BryceTech (2025)

|          |             | Q1/2023 | Q2/2023 | Q3/2023 | Q4/2023 | Q1/2024 | Q2/2024 | Q3/2024 | Q4/2024 | Q1/2025 | Q2/2025 | TOTAL | Percentage |
|----------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|------------|
| USA      | 92.48%      | 27      | 25      | 32      | 30      | 36      | 42      | 32      | 44      | 42      | 54      | 364   | 58.24%     |
| China    |             | 14      | 11      | 20      | 22      | 14      | 16      | 16      | 22      | 17      | 19      | 171   | 27.36%     |
| Russia   |             | 6       | 3       | 4       | 6       | 5       | 3       | 3       | 6       | 4       | 3       | 43    | 6.88%      |
| India    |             | 2       | 2       | 3       | 0       | 2       | 0       | 1       | 2       | 1       | 1       | 14    | 2.24%      |
| Japan    |             | 2       | 0       | 1       | 0       | 3       | 0       | 2       | 2       | 1       | 1       | 12    | 1.92%      |
| Europe/l | France/Germ | 0       | 1       | 1       | 1       | 0       | 0       | 2       | 1       | 2       | 1       | 9     | 1.44%      |
| Iran     |             | 0       | 0       | 1       | 0       | 2       | 0       | 1       | 1       | 0       | 0       | 5     | 0.80%      |
| N Korea  |             | 0       | 1       | 1       | 1       | 0       | 1       | 0       | 0       | 0       | 0       | 4     | 0.64%      |
| S Korea  |             | 0       | 1       | 0       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 2     | 0.32%      |
| Israel   |             | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1     | 0.16%      |
| Total    |             | 52      | 44      | 63      | 61      | 62      | 62      | 57      | 78      | 67      | 79      | 625   | 100.00%    |

A dozen countries (out of 195) are enabling and defining our footprint beyond our atmosphere.

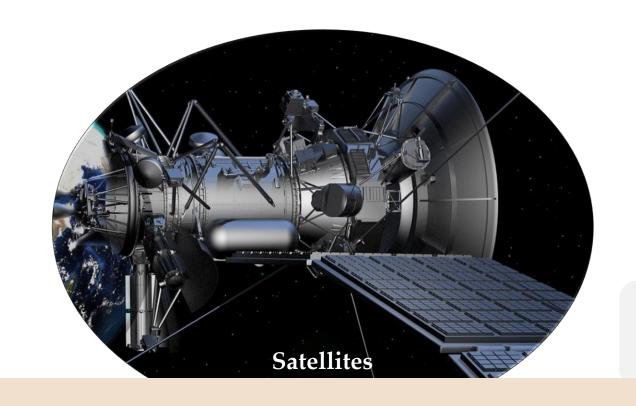
Table 2: GDP of Countries with Orbital Launch Capability, 2024

Source: IMF (2025), except for North Korea, online sources estimate.

|                                           | GDP, current prices | Orbital Launches |
|-------------------------------------------|---------------------|------------------|
|                                           | (Billions of U.S.   | Q1/23 -Q2/25     |
| Source: IMF World Economic Outlook (2025) | dollars) 2024       | Total            |
| United States                             | 29298.025           | 364              |
| Europe                                    | 27203.017           | 9                |
| China, People's Republic of               | 18749.759           | 171              |
| Germany                                   | 4684.182            | Europe           |
| Japan                                     | 4019.382            | 12               |
| India                                     | 3909.892            | 14               |
| United Kingdom                            | 3644.636            | 0                |
| France                                    | 3160.902            | Europe           |
| Russian Federation                        | 2173.225            | 43               |
| Korea, Republic of                        | 1875.388            | 2                |
| United Arab Emirates                      | 552.325             | 0                |
| Israel                                    | 542.285             | 1                |
| Iran                                      | 416.676             | 5                |
| North Korea (DPRK) (Estimated)            | 34.9                | 4                |

Building orbital access capability is about policy prioritisation, and <u>not</u> economic size.

## Number of Spacecraft and Upmass Carried by Launch Provider from Q1/2023 to Q2/2025


Source: Papazian (2024) compiled and updated using BryceTech (2025)

|                                                    | Q1/2   | 023     | Q2/2  | 2/2023 Q3 |        | 2023    | Q4/2   | 2023    | Q1/2   | 2024    | Q2/    | 2024    | Q3/2   | 024     | Q4/2   | 024     | Q1/2025 |         | Q2/2   | 2/2025  |        | TOTAL     |  |
|----------------------------------------------------|--------|---------|-------|-----------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------|---------|--------|---------|--------|-----------|--|
| Name of Provider                                   | Number | Kg N    | umber | KgN       | Number | Kg!     | Number | Kg      | Number | Kgv     | lumber | Kg      | Number | KgN     | Number | Kg      | Number  | Kg      | Number | Kg      | Number | Kg        |  |
| Space Exploration Technologies (SpaceX)            | 763    | 233,114 | 648   | 214,095   | 519    | 381,278 | 590    | 382,080 | 525    | 429,125 | 659    | 530,488 | 518    | 362,087 | 680    | 540,678 | 780     | 477,570 | 1,060  | 639,282 | 6,742  | 4,189,797 |  |
| China Aerospace Science & Technology Corp. (CASC)  | 31     | 23,965  | 49    | 23,069    | 24     | 24,560  | 31     | 40,810  | 27     | 29,426  | 23     | 35,534  | 56     | 30,350  | 78     | 65,996  | 58      | 44,791  | 50     | 53,230  | 427    | 371,731   |  |
| Roscosmos                                          | 6      | 23,093  | 2     | 8,100     | 4      | 17,475  | 7      | 25,612  | 24     | 13,782  | 13     | 12,820  | 4      | 415     | 60     | 24,458  | 8       | 12,450  | 4      | 11,272  | 132    | 149,477   |  |
| Rocket Lab                                         | 7      | 427     | 1     | 21        | 9      | 416     | 1      | 100     | 10     | 508     | 9      | 285     | 7      | 1,212   | 7      | 2,283   | 20      | 602     | 8      | 515     | 79     | 6,369     |  |
| United Launch Alliance (ULA)                       |        |         | 1     | 5,000     | 3      | 6,000   | 2      | 1,200   | 7      | 1,285   | 2      | 19,000  | 3      | 200     | 1      | 123     |         |         | 54     | 31,050  | 73     | 63,858    |  |
| Galactic Energy                                    | 5      | 179     |       |           | 15     | 1,280   | 2      | 265     |        |         | 13     | 810     | 7      | 3,860   | 4      | 1,500   | 19      | 1,360   | 4      | 200     | 69     | 9,454     |  |
| CAS Space                                          |        |         | 26    | 912       |        |         |        |         | 5      | 890     |        |         | 5      | 608     | 26     | 5,400   |         |         | 6      | 920     | 68     | 8,730     |  |
| Indian Space Research Organisation (ISRO)          | 39     | 5,466   | 4     | 2,722     | 11     | 5,817   |        |         | 2      | 2,744   |        |         | 1      | 60      | 4      | 1,210   | 1       | 2,250   | 1      | 1,696   | 63     | 21,965    |  |
| GK Launch Services                                 |        |         | 49    | 3,168     |        |         |        |         |        |         |        |         |        |         |        |         |         |         |        |         | 49     | 3,168     |  |
| ExPace                                             | 4      | 200     | 1     | 20        | 9      | 425     | 8      | 400     | 5      | 350     | 4      | 616     | 4      | 450     | 1      | 200     | 1       | 100     |        |         | 37     | 2,761     |  |
| Arianespace                                        |        |         | 4     | 5,963     | 2      | 6,950   | 12     | 806     |        |         |        |         | 12     | 14,760  | 1      | 250     | 1       | 3562    | 1      | 1,131   | 33     | 33,422    |  |
| Chinarocket Co. Ltd.                               |        |         |       |           |        |         | 1      | 200     | 9      | 575     |        |         | 8      | 4,200   |        |         | 10      | 1200    |        |         | 28     | 6,175     |  |
| Mitsubishi Heavy Industries Launch Services        |        |         |       |           | 4      | 3,050   |        |         | 4      | 4,755   |        |         | 2      | 175     | 1      | 150     | 1       | 4900    | 1      | 2,600   | 13     | 15,630    |  |
| Landspace                                          |        |         |       |           | 1      | 1       | 3      | 150     |        |         |        |         |        |         | 2      | 255     |         |         | 6      | 923     | 12     | 1,329     |  |
| Firefly Aerospace                                  |        |         |       |           | 1      | 200     | 1      | 250     |        |         |        |         | 8      | 3,900   |        |         |         |         | 1      | 450     | 11     | 4,800     |  |
| Korea Aerospace Research Institute (South Korea)   |        |         | 8     | 202       |        |         |        |         |        |         |        |         |        |         |        |         |         |         |        |         | 8      | 202       |  |
| Virgin Orbit                                       | 8      | 35      |       |           |        |         |        |         |        |         |        |         |        |         |        |         |         |         |        |         | 8      | 35        |  |
| Iranian Space Agency                               |        |         |       |           |        |         |        |         | 3      | 40      |        |         |        |         | 3      | 1,000   |         |         |        |         | 6      | 1,040     |  |
| Space One (Canon/IHI)                              |        |         |       |           |        |         |        |         | 1      | 100     |        |         |        |         | 5      | 2,280   |         |         |        |         | 6      | 2,380     |  |
| I-Space                                            |        |         | 1     | 100       |        |         | 1      | 250     |        |         |        |         | 3      | 258     |        |         |         |         |        |         | 5      | 608       |  |
| Korean Committee of Space Technology (North Korea) |        |         | 1     | 5         | 1      | 250     |        |         |        |         | 1      | 100     |        |         |        |         |         |         |        |         | 3      | 355       |  |
| Orienspace                                         |        |         |       |           |        |         |        |         | 3      | 300     |        |         |        |         |        |         |         |         |        |         | 3      | 300       |  |
| Northrop Grumman Space Systems                     |        |         |       |           | 1      | 8,051   |        |         |        |         |        |         |        |         |        |         |         |         | 2      | 500     | 3      | 8,551     |  |
| China Manned Space Agency                          |        |         |       |           |        |         | 1      | 8,100   |        |         | 1      | 8,082   |        |         |        |         |         |         |        |         | 2      | 16,182    |  |
| Islamic Revolutionary Guard Corps                  |        |         |       |           |        |         |        |         | 1      | 50      |        |         | 1      | 34      |        |         |         |         |        |         | 2      | 84        |  |
| ABL Space Systems                                  | 2      | 22      |       |           |        |         |        |         |        |         |        |         |        |         |        |         |         |         |        |         | 2      | 22        |  |
| Japan Aerospace Exploration Agency (JAXA)          | 2      | 3,500   |       |           |        |         |        |         |        |         |        |         |        |         |        |         |         |         |        |         | 2      | 3,500     |  |
| China National Space Administration                |        |         | 1     | 8,082     |        |         |        |         |        |         |        |         |        |         |        |         |         |         |        |         | 1      | 8,082     |  |
| Iranian Revolutionary Guards Air Force             |        |         |       |           | 1      | 10      |        |         |        |         |        |         |        |         |        |         |         |         |        |         | 1      | 10        |  |
| National Aerospace Technology Administration       |        |         |       |           |        |         | 1      | 250     |        |         |        |         |        |         |        |         |         |         |        |         | 1      | 250       |  |
| South Korea Ministry of National Defense           |        |         |       |           |        |         | 1      | 100     |        |         |        |         |        |         |        |         |         |         |        |         | 1      | 100       |  |
| Space Pioneer                                      |        |         | 1     | 8         |        |         |        |         |        |         |        |         |        |         |        |         |         |         |        |         | 1      | 8         |  |
| Israel Defense Forces                              | 1      | 260     |       |           |        |         |        |         |        |         |        |         |        |         |        |         |         | ı       |        |         |        |           |  |
| Blue Origin                                        |        |         |       |           |        |         |        |         |        |         |        |         |        |         |        |         | 1       | 500     | 7,     | 894     | 4,93   | 31,140    |  |
| Relativity Space                                   | 1      | 5       |       |           |        |         |        |         |        |         |        |         |        |         |        |         |         | •       |        |         | 1      | 5         |  |
| Isar Aerospace Technologies Gmbh                   |        |         |       |           |        |         |        |         |        |         |        |         |        |         |        |         | 0       | 0       |        |         | 0      | 0         |  |
| Total                                              | 869    | 290,266 | 797   | 271,467   | 605    | 455,763 | 662    | 460,573 | 626    | 483,930 | 725    | 607,735 | 639    | 422,569 | 873    | 645,783 | 900     | 549,285 | 1,198  | 743,769 | 7,894  | 4,931,140 |  |

MAY 2025: 11,700

2030: 100,000

Using space-based infrastructure to deliver goods and services on Earth and for national security.





Space Exploration Applications at 2.5% (WEF-McKinsey, 2024)


Human productivity is effectively still Earthbound.

### Global 'Space Economy', 2023 - 2035, \$Bn

Source: WEF-McKinsey (2024)

### Relative to World GDP 2023 and Global Wealth 2023, \$Bn

Source: IMF (2024), UBS (2024)



Humanity spends more on protecting itself from itself than on building its collective future in outer space.



Financial value framework Financial mathematics Monetary architecture



Financial value framework Financial mathematics Monetary architecture

Space, <u>our physical</u> context, is missing.

### Sample Bond Valuation Equations

#### Elements

Bond Value = 
$$\sum_{t=1}^{n} \frac{C_t}{(1+r)^t} + \frac{P}{(1+r)^n}$$

n = Maturity or Number of Periods*m*= *Number of Compounding* 

t = Moving time

r = Discount Rate or Yield to Maturity

P = Par Value of Bond

$$C_t = Coupon Payments$$

Bond Value = 
$$\sum_{t=1}^{n \times m} \frac{C_t}{\left(1 + \left(\frac{r}{m}\right)\right)^t} + \frac{P}{\left(1 + \left(\frac{r}{m}\right)\right)^{n \times m}}$$

### Sample of Stock and Firm Valuation Equations

$$P_0 = \frac{D_1}{r - g}$$

 $P_0 = Stock price$ 

$$g = Constant \ Growth \ Rate \ in \ Dividends$$

r = Constant Cost of Capital

 $D_1 = Next \ Year/Period \ Dividend$ 

 $P_{n} = Terminal\ Value = (D_{n+1}/WACC-g)$ 

 $D_t = Dividend at t$ 

 $D_{n+1}$ =Dividend at n+1

WACC = Weighted Average Cost of Capital g = Constant Growth Rate in Dividends

$$g = Constant Growth Rate in Divides FCFF_t = Free Cash Flow to Firm at t$$

$$P_0 = \sum_{t=1}^{n} \frac{D_t}{(1 + WACC)^t} + \frac{D_{n+1}}{(WACC - g).(1 + WACC)^n}$$

 $E(R_i) - R_f = b_1(E(R_M) - R_f) + s_i E(SMB) + h_i E(HML)$ 

#### Sample of Asset Pricing Models

 $P_0 = \sum_{t=1}^{n} \frac{D_t}{(1 + WACC)^t} + \frac{P_n}{(1 + WACC)^n}$ 

$$R_i = R_f + \beta_i \times (R_m - R_f)$$

$$\beta_i = \frac{Covariance_{R_i,R_m}}{Variance_R}$$

 $R_i = Return \ on \ security \ i$ 

 $R_f = Risk Free Rate$ 

 $\beta_i = Beta = Systematic Risk Proxy$ 

Rm = Return on market

 $E(R_i) - R_f = Expected Excess Return Stock i$ 

 $E(R_i) = Expected Return on Stock i$ 

 $R_f = Risk Free Rate$ 

 $E(R_M) = Expected Return on Market$ 

 $E(R_M) - R_f = Exp.$  Market Risk Premium

E(SMB) = Expected Size Premium

E(HML) = Expected Value Premium

 $b_i$ ,  $s_i$ ,  $h_i$  = Factor Sensitivities or Loadings

## **Key Equations of Value and Return in Finance**

Modigliani Miller Corporate Value & Capital Structure Model

$$V_j = \left(S_j + D_j\right) = \frac{\overline{X}_j}{\rho_k}$$

 $V_j = Value \ of \ Firm \ j$ 

Sj = Market Value of Common Shares of j

*Dj* = *Market Value of Debts of j* 

Xj = Expected Return on the Assets owned

by the company

 $\rho k$  = Capitalisation Rate for shares in class k

$$i_j = \rho_k + (\rho_k - r) \frac{D_j}{S_j}$$

Black and Scholes Option Pricing Model

$$C = SN(d) - Le^{-rt}N(d - \sigma\sqrt{t})$$

C = Value of Call Option

Nd = Normal Distribution Function

t = Time to Maturity

L = Exercise (Strike)Price of Option

 $\sigma$  = Standard Deviation of Return on Stock

*r* = *Risk Free Interest Rate* 

*S* = *Current Stock Price or Asset Price* 

$$d = \frac{\ln \frac{S}{L} + \left(r + \frac{\sigma^2}{2}\right)t}{\frac{\sigma\sqrt{t}}}$$

Net Present Value & Cash Flow Valuation

$$NPV = \sum_{t=0}^{T} \frac{CF_t}{(1+r)^t}$$

$$NPV = \sum_{t=0}^{T} \frac{CF_t}{(1+r)^t}$$
  $NPV = CF_0 + \sum_{t=1}^{T} \frac{CF_t}{(1+r)^t}$ 

 $n = Time\ Horizon$ 

t = Moving time

r = Discount Rate

II = Initial Investment

 $CF_t = Future\ Expected\ Cash\ Flows\ at\ t$ 

Net Present Value = 
$$-II + \sum_{t=1}^{n} \frac{CF_t}{(1+r)^t}$$

### Sample Bond Valuation Equations

# Bond Value = $\sum_{t=1}^{\infty} \frac{C_t}{(1+r)^t} + \frac{P}{(1+r)^n}$

Bond Value = 
$$\sum_{t=1}^{n \times m} \frac{C_t}{\left(1 + \left(\frac{r}{m}\right)\right)^t} + \frac{P}{\left(1 + \left(\frac{r}{m}\right)\right)^{n \times m}}$$

#### Elements

n = Maturity or Number of Periods*m*= *Number of Compounding* 

t = Moving time

r = Discount Rate or Yield to Maturity

P = Par Value of Bond

 $C_t = Coupon Payments$ 

### Sample of Stock and Firm Valuation Equations

$$P_0 = \frac{D_1}{r - g}$$

$$P_0 = \sum_{t=1}^{n} \frac{D_t}{(1 + WACC)^t} + \frac{P_n}{(1 + WACC)^n}$$

$$P_0 = \sum_{t=1}^{n} \frac{D_t}{(1 + WACC)^t} + \frac{D_{n+1}}{(WACC - g).(1 + WACC)^n}$$

Sample of Asset Pricing Models

$$R_i = R_f + \beta_i \times (R_m - R_f) \qquad \beta_i$$

$$\beta_i = \frac{Covariance_{R_i,R_m}}{Variance_n}$$

 $R_f = Risk Free Rate$ 

 $\beta_i = Beta = Systematic Risk Proxy$ 

Rm = Return on market

F(D. ) = De - Functed Fuces Datum Stock i

## **Key Equations of Value and Return in Finance**

Modigliani Miller Corporate Value & Capital Structure Model

win on security i

See Rate

Turn on security i

See Rate

Timpact, No Impact, No Impac

 $V_j = Value \ of \ Firm \ j$ 

Si = Market Value of Common Shares of i

Di = Market Value of Debts of i

X i = Expected Return on the Assets owned e company

Capitalisation Rate for shares in class k

C = Value of Call Option

*Nd* = *Normal Distribution Function* 

t = Time to Maturity

L = Exercise (Strike)Price of Option

 $\sigma$  = Standard Deviation of Return on Stock

r = Risk Free Interest Rate

*S* = *Current Stock Price or Asset Price* 

$$d = \frac{\ln \frac{S}{L} + \left(r + \frac{\sigma^2}{2}\right)}{\sqrt[\sigma]{t}}$$

$$NDV = \sum_{t=0}^{T} CF_t$$

$$MDV = \sum_{t=0}^{T} CF_{t}$$
  $MDV = CF_{t} + \sum_{t=0}^{T} CF_{t}$ 

 $n = Time\ Horizon$ t = Moving time

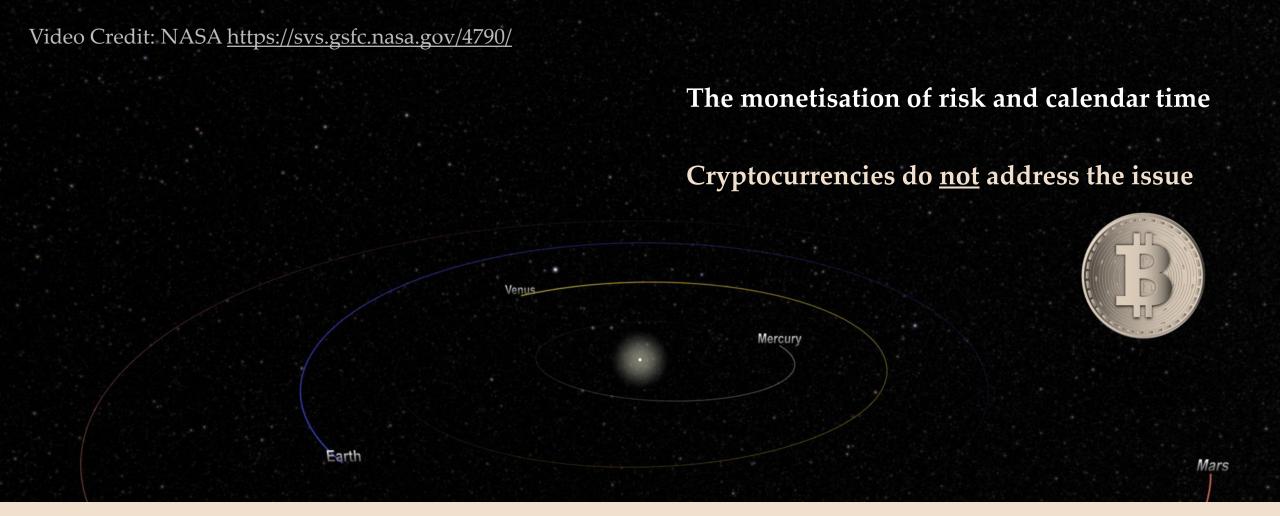
r = Discount Rate

A spaceless financial value framework & mathematics constrain the public and private parts of the outer space economy.

# All forms of fiat money are created through or backed by debt instruments.

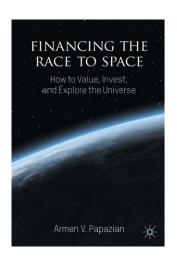
**Quantitative Easing (QE):** Purchase of bonds with Freshly created central bank reserves

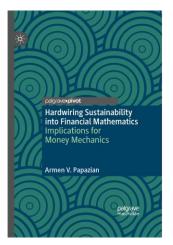


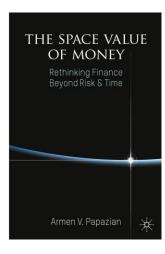

| Dond Walus - | $\frac{n}{\sqrt{n}}$    | $C_t$     | P                        |
|--------------|-------------------------|-----------|--------------------------|
| Bond Value = | $\sum_{t=1}^{\infty} ($ | $(1+r)^t$ | $+$ $\overline{(1+r)^n}$ |

**RISK** 

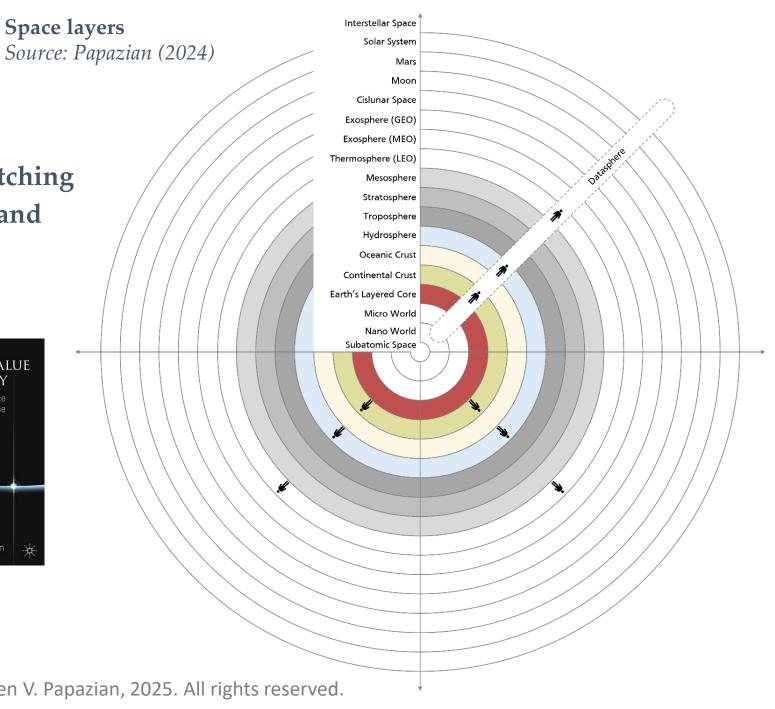
TIME —


| January February |    |    |      |     |    |    |         |    |    | March |    |    |    |    |          |    |      | April |    |    |    |    |          |     |    |    |   |  |  |  |
|------------------|----|----|------|-----|----|----|---------|----|----|-------|----|----|----|----|----------|----|------|-------|----|----|----|----|----------|-----|----|----|---|--|--|--|
| S                | M  | Т  | W    | Т   | F  | S  | S       | M  | Т  | W     | Т  | F  | S  | S  | M        | Т  | W    | Т     | F  | S  | S  | M  | Т        | W   | Т  | F  | 5 |  |  |  |
|                  | 1  | 2  | 3    | 4   | 5  | 6  |         |    |    |       | 1  | 2  | 3  |    |          | 27 | 28   |       | 1  | 2  |    | 1  | 2        | 3   | 4  | 5  | j |  |  |  |
| 7                | 8  | 9  | 10   | 11  | 12 | 13 | 4       | 5  | 6  | 7     | 8  | 9  | 10 | 3  | 4        | 5  | 6    | 7     | 8  | 9  | 7  | 8  | 9        | 10  | 11 | 12 |   |  |  |  |
|                  |    |    |      |     |    |    |         |    |    |       |    |    |    | 10 | 11       | 12 | 13   | 14    | 15 | 16 |    |    |          |     |    |    |   |  |  |  |
| 14               | 15 | 16 | 17   | 18  | 19 | 20 | 11      | 12 | 13 | 14    | 15 | 16 | 17 | 17 | 18       | 19 | 20   | 21    | 22 | 23 | 14 | 15 | 16       | 17  | 18 | 19 | 4 |  |  |  |
| 21               | 22 | 23 | 24   | 25  | 26 | 27 | 18      | 19 | 20 | 21    | 22 | 23 | 24 | 24 | 25       | 26 | 27   | 28    | 29 | 30 | 21 | 22 | 23       | 24  | 25 | 26 | 2 |  |  |  |
| 28               | 29 | 30 | 31   | 1   | 2  | 3  | 25      | 26 | 27 | 28    | 29 | 1  | 2  | 31 | 1        | 2  | 3    | 4     | 5  | 6  | 28 | 29 | 30       | 1   | 2  | 3  |   |  |  |  |
|                  |    |    | May  | ,   |    |    |         |    |    | June  | 9  |    |    |    |          |    | July | ,     |    |    |    |    | Α        | ugu | st |    |   |  |  |  |
| S                | M  | Т  | W    | т   | F  | S  | S       | M  | T  | W     | Т  | F  | S  | S  | M        | Т  | W    | Т     | F  | S  | S  | M  | Т        | w   | Т  | F  |   |  |  |  |
|                  |    |    | 1    | 2   | 3  | 4  |         | 27 | 28 |       |    | 31 | 1  |    | 1        | 2  | 3    | 4     | 5  | 6  |    |    |          |     | 1  | 2  |   |  |  |  |
| 5                | 6  | 7  | 8    | 9   | 10 | 11 | 2       | 3  | 4  | 5     | 6  | 7  | 8  | 7  | 8        | 9  | 10   | 11    | 12 | 13 | 4  | 5  | 6        | 7   | 8  | 9  |   |  |  |  |
|                  |    |    |      |     |    |    | 9       | 10 | 11 | 12    | 13 | 14 | 15 |    |          |    |      |       |    |    |    |    |          |     |    |    |   |  |  |  |
| 12               | 13 | 14 | 15   | 16  | 17 | 18 | 16      | 17 | 18 | 19    | 20 | 21 | 22 | 14 | 15       | 16 | 17   | 18    | 19 | 20 | 11 | 12 | 13       | 14  | 15 | 16 |   |  |  |  |
| 19               | 20 | 21 | 22   | 23  | 24 | 25 | 23      | 24 | 25 | 26    | 27 | 28 | 29 | 21 | 22       | 23 | 24   | 25    | 26 | 27 | 18 | 19 | 20       | 21  | 22 | 23 |   |  |  |  |
| 26               | 27 | 28 | 29   | 30  | 31 | 1  | 30      | 1  | 2  | 3     | 4: | 5  | 6  | 28 | 29       | 30 | 31   | 1     | 2  | 3  | 25 | 26 | 27       | 28  | 29 | 30 | - |  |  |  |
|                  |    | Se | ptem | ber |    |    | October |    |    |       |    |    |    |    | November |    |      |       |    |    |    |    | December |     |    |    |   |  |  |  |
| S                | M  | Т  | W    | Т   | F  | S  | s       | M  | T  | W     | Т  | F  | S  | S  | M        | Т  | W    | T     | F  | S  | S  | M  | Т        | W   | T  | F  |   |  |  |  |
| 1                | 2  | 3  | 4    | 5   | 6  | 7  |         |    | 1  | 2     | 3  | 4  | 5  | 27 | 28       | 29 |      |       | 1  | 2  | 1  | 2  | 3        | 4   | 5  | 6  |   |  |  |  |
| 8                | 9  | 10 | 11   | 12  | 13 | 14 | 6       | 7  | 8  | 9     | 10 | 11 | 12 | 3  | 4        | 5  | 6    | 7     | 8  | 9  | 8  | 9  | 10       | 11  | 12 | 13 |   |  |  |  |
| 15               | 16 | 17 | 18   | 19  | 20 | 21 | 13      | 14 | 15 | 16    | 17 | 18 | 19 | 10 | 11       | 12 | 13   | 14    | 15 | 16 | 15 | 16 | 17       | 18  | 19 | 20 |   |  |  |  |
| 22               | 23 | 24 | 25   | 26  | 27 | 28 | 20      | 21 | 22 | 23    | 24 | 25 | 26 | 17 | 18       | 19 | 20   | 21    | 22 | 23 | 22 | 23 | 24       | 25  | 26 | 27 |   |  |  |  |
| 29               | 30 | 1  | 2    |     | 4  | 5  | 27      | 28 | 29 | 30    | 31 | 7  | 2  | 24 | 25       | 26 | 27   | 28    | 29 | 30 | 29 | 30 | 31       | 9   |    |    |   |  |  |  |


**Rotation** 24 hours = **1day Revolution** 365 days = **1 year** 




A debt-based monetary architecture monetises the fixed movements of Earth in space but not Earth itself, not Space.


Space, our physical context, stretching from subatomic to interstellar space and every layer in between and beyond.











## **Equations of Impact and Space Value**

Source: Papazian (2024)

Impact Aspect Net Space Value

 $g \times (PI_{T,S,P} + BI_{T,S,R} + HCI_{T,S} + RDI_{T,S,N} + NAI_{D,S,A} + NMI_T)$ 

**PLANETARY** 

**Pollution Impact** 

$$PI_{T,S,P} = \sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{p=1}^{P} Q_{pst} \times C_{pst}$$

**Biodiversity Impact** 

$$BI_{T,S,B} = \sum_{t=1}^{T} \sum_{s=1}^{S} \sum_{b=1}^{B} A_{bst} \times R_{bst}$$

HUMAN

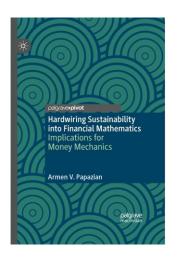
**Human Capital** Impact

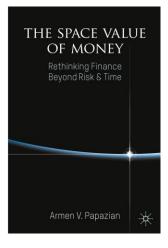
$$HCI_{T,S} = f \times \sum_{t=1}^{T} \sum_{s=1}^{S} E_{st} + T_{st} + H_{st} + I_{st} + C_{st} + S_{st}$$

R and D Impact

$$RDI_{T,S,N} = \sum_{t=1}^{I} \sum_{s=1}^{S} \sum_{n=1}^{N} h_n \times RD_{tsn}$$

**ECONOMIC** 


New Asset **Impact** 


$$NAI_{D,S,A} = \sum_{s=1}^{S} \sum_{a=1}^{A} k_a \times BVA_{asD}$$

**New Money Impact** 

$$NMI_T = (II \times DR \times BLR) + mm \times (II + X_T - M_T)$$

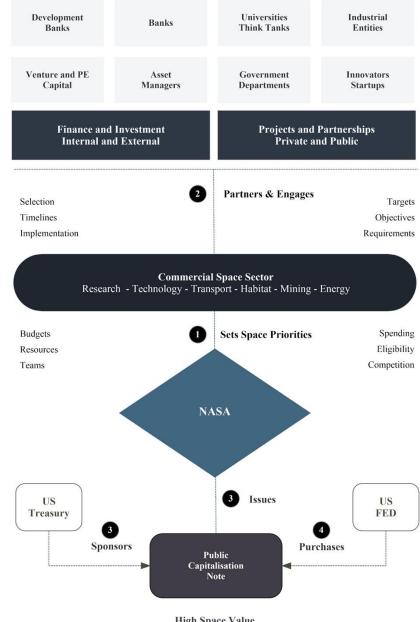






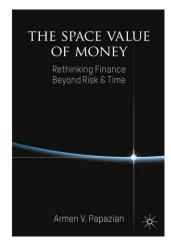
The Space Value Of Money

Fairness


Health h Coefficients

Transition k

Governance


### **Public Capitalisation Notes – NASA PCN**

Source: Papazian (2024)









The Space Value Of Money



# Thank You!

